Publications in the First Twenty Years of Switching Theory and Logic Design

Radomir S. Stanković Tsutomu Sasao Jaakko T. Astola

TICSP Series #14
August 2001
Publications in the First Twenty Years of Switching Theory and Logic Design

Radomir S. Stanković Tsutomu Sasao Jaakko T. Astola
TICSP Series

Editor Jaakko Astola
 Tampere University of Technology

Editorial Board Moncef Gabbouj
 Tampere University of Technology
 Murat Kunt
 Ecole Polytechnique Fédérale de Lausanne
 Truong Nguyen
 University of Wisconsin, Madison

1 Egiazarian/Saramäki/Astola. Proceedings of Workshop on Transforms and Filter Banks.
2 Yaroslavsky. Target Location: Accuracy, Reliability and Optimal Adaptive Filters.
5 Stanković/Moraga/Astola. Readings in Fourier Analysis on Finite Non-Abelian Groups.
6 Yaroslavsky. Advanced Image Processing Lab.: An educational and research package for MatLab.
7 Klapuri. Contributions to Technical Seminar on Content Analysis of Music and Audio.
8 Stanković/Stanković/Astola/Egiazarian. Fibonacci Decision Diagrams.
9 Yaroslavsky/Egiazarian/Astola. Transform Domain Image Restoration Methods: Review; Comparison and Interpretation.
12 Danielian. Regularly Varying Functions, Part I, Criteria and Representations.

Tampere International Center for Signal Processing
Tampere University of Technology
P.O. Box 553
FIN-33101 Tampere
Finland

ISBN
ISSN 1456-2774
TTKK, Monistamo, 2001
Abstract

This paper reviews publications in switching theory and logic design up to 1958, including both mathematical foundations and engineering applications.

1 Introduction

Switching theory is a theoretical basis for logic design which is a discipline in very foundations of computer sciences. However, it is closely related to signal processing and system theory.

If it is considered within the signal processing, switching theory is an area devoted to the processing of a particular class of signals, the logic signals, that are digital signals modelled by logic functions [4] including switching (SW) functions [21] and multiple-valued (MV) functions [15] as particular examples. Fig. 1 shows a classification of signals. Fig. 2 shows relationships among classes of logic functions used as models for digital signals. In this figure, \(G_i \) and \(R_i \) are finite discrete sets of the cardinality \(|G_i|\) and \(|R_i|\), respectively.

If considered as a part of system theory, the logic design relates to the design of digital systems whose input and output signals can be described by logic functions. In electrical engineering, a system may be a computing device, a communication channel, an automatic control system, a computation procedure or the related program, and similar.

For mathematic descriptions of systems, some algebraic structure should be imposed to the domain and the range of input and output signals. A group is the weakest algebraic structure for the domain still providing a mathematically tractable model for a system [28]. For the range, it is usually assumed the structure of a field, that could be the field of rational numbers \(\mathbb{Q} \), complex number \(\mathbb{C} \) or a finite (Galois) field \(GF(p) \).

In particular, when switching functions are considered as functions on finite dyadic groups, \(C_2^n = (\{0, 1\}^n, \oplus) \), where \(\oplus \) denotes modulo 2 addition, logic EXOR, then the logic networks relate to the dyadic systems [1], [2], [17]. Thus, logic networks are dyadic systems with the range of input and output signals restricted to the finite (Galois) field \(GF(2) \). In the same setting, logic networks for MV functions are systems on \(p \)-adic groups into \(GF(p) \) [9]. A generalization to systems on different, not necessarily Abelian groups, is straightforward [5], [26]. Fig. 3 shows the relationships among systems on groups.

2 Background and History of Switching Theory and Logic Design

Applications of switching theory in engineering practice, which means the development of switching theory and logic design, dates back to the introduction of transmission, storage, and processing of information in digital form [8], [23]. It is believed by many authors that switching theory as a separate discipline originates in 1938 due to the publications by Shannon [24], Nakashima [16], and Shestakov [25]. However, its mathematics foundations are set quite earlier in mathematical logic and related areas.

Fig. 4 express the relationships of switching theory and logic design to signal processing and system theory.

The origins of these disciplines, the switching theory and logic design as the realizations of it, can be traced in both these directions, towards signal processing and system theory. In particular, it is apparent that their development in the Western European countries and USA were primarily related to the signal processing within attempts to solve some problems as, for example, those
Figure 1: Signals.

Figure 2: Logic signals.
Figure 3: Classification of systems on groups.

Figure 4: Switching theory and logic design.
arising in switching in railroad systems, information transmission and error correction, and automatic
telephony. However, in the East European countries and former Soviet Union, the development of
switching theory and logic design originates in system theory related primarily to automatic control
problems.

In Japan, the development of these areas started with interest in the design of relay network
systems [16]. However, the approaches related to the system theory were also used. In particular,
the group theoretic approach to logic design originated in the work by Komamiya [7].

3 Contents and Presentations

This publication presents a compilation of references in the area of switching theory and logic design
until 1958 ordered by the year of publication with authors in the alphabetical order within. The
main sources of information were [3], [6], annual bibliographies by [11], [12], [13], [14], [18], [19], [20],
and Addendum A.7 in [21]. Besides a study and comparison of these publications, a considerable
number of references were provided through a communication and correspondence with researches in
this area. In that respect, the authors are very grateful to Prof. Vladimir D. Malyugin of Institute
of Automatic Control, Moscow. A number of references is due to our own search intended primarily
to establish the links of former results to some topics of present research interests.

4 Closing Remarks

Besides rather straightforward applications of ancient theory and old methods, when that is possible,
under a proper interpretation and after possible suitable reformulations, to different data structures
[27], and new technologies [22], the reconsideration of former work in an area can be useful as a
source of new ideas [10]. We believe that this publication may contribute to these attempts.

References

489-512.
European Meeting on Cybernetics and Systems Research, 5.-8.4.1994, Vienna, Austria.
1961, 638-661.
1978.
[7] Komamiya, Y., ”Application of Logical mathematics to Information Theory (Application of Theory of
Group to Logical Mathematics)”, The Bulletin of the Electrotechnical Laboratory in Japanese Govern-
ment, April 1953.
the First All-Union Conference on Questions of Communication, Izd. Red. Upr. Svazy RKKA, Moscow,
1933, (in Russian).

[22] Sasao, T., ”A new expansion of symmetric functions and their applications to non-disjoint functional decomposition for LUT Type FPGAs”, IWLS-2000.

Acknowledgement

A part of this publication was prepared during the stay of Radomir S. Stanković at Tampere Int. Center for Signal Processing (TICSP). The support and facilities provided by TICSP are gratefully appreciated and gladly acknowledged.
Publications in the First Twenty Years of Switching Theory and Logic Design

References

1900

1903

1915

1920

1921

1924

1927

1928

1931

1933

1934

1935

1936

1937

1938

[40] Livshits, N., " Theoretical basis for design and construction of remote control apparatus", in *Relejnye Soedinenija (Relay Connections)*, Izd. Obedinenie Nauchno-Tekhniceskikh Izdateleb (ONTI), 1938, (In Russian).

10

1939

1940

[53] Rozenberg, V., "The problem of interlocking and transforming of contact groups", Avtomat. i Telemekh., No. 1, 1940, 47-54. (In Russian.)

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

[391] Gavrilov, M. A., "The present status and basic research problems in the field of remote control”, *Telemekh. v narodnom khozjajstve*, 1956, 11.

[405] Ivanov, V. I., "Investigation of relay contact circuits", in *Telemekh v narodnom khozjajstve*, AN SSSR, Moscow 1956, 146-158, (In Russian).

1957

[544] Lazarev, V. G., ”Method for determining the minimum number of relays required for setting up relay circuits according to given premises”, All-Union Moscow Conf. Theory Relay Operating Devices, AN SSSR, 1957, 38, (In Russian).

1958

Zemanek, H., ”Solving the equations of the switching circuit algebra”, Arch. elekt. Merin, Vol. 12, No. 1, January 1958, 35-44, (In German),

